[time-nuts] Averaging effects

Bruce Griffiths bruce.griffiths at xtra.co.nz
Mon Dec 27 21:48:03 UTC 2010


The tight PLL isn't a cure all for injection locking which creates a 
frequency offset despite the PLL (see p102 of Wolaver).
If the isolation is inadequate instability in the injection level and 
phase shift due to environmental fluctuations will cause a measurable 
effect.
The isolation achieved depends both on the OCXO reverse isolation and 
that of the measurement setup.

If the frequency offset due to injection is to be less than 1E-12 then 
the reverse isolation needs to be greater than 120dB for a loaded 
crystal Q of around 1E6.
Alternatively with a crystal Q of 100,000 a reverse isolation of 120dB 
coupled with an injection amplitude stability of 10% or so may suffice.

Another trap when using some DVM's to measure the frequency fluctuations 
in the tight PLL method is the finite dead time between measurements.

Oscillators that are not deliberately phase locked also exhibit 
injection locking effects if the frequencies of the 2 oscillators are 
close enough (within the capture range of the equivalent first order 
PLL) and the inherent instability of the  2 oscillators isnt large 
enough to preclude locking due a too narrow equivalent PLL bandwidth.

Bruce

ws at Yahoo wrote:
> Others said:
>> There is a downside to this approach which should be understood, it 
>> will also averaging out the white noise of the DUTs.
>> The time interval counter method severely undersamples the phase 
>> noise spectrum leading to aliasing effects.
>> The measured ADEV depends on the associated filter bandwidth
>> Filtering is tricky since you will both reduce the measurement 
>> systems noise as well as the the DUTs noise.
>> The aliasing effect is definitively there.
>> Question is how to remove the system noise from the DUT noise
>
> One way to avoid those trade-offs is to do the frequency difference 
> averaging with a TPLL (Tight Phase Lock Loop) using a "proper" 
> integration of it's output over the tau time period.
> example at:     http://www.thegleam.com/ke5fx/tpll.htm
>
> ws
>
> ******************
> Magnus Danielson magnus at rubidium.dyndns.org
>
> Hej Bruce,
>
> On 12/27/2010 08:13 PM, Bruce Griffiths wrote:
>> Tom Van Baak wrote:
>>>> There is a downside to this approach which should be understood, it
>>>> will also averaging out the white noise of the DUTs.
>>>
>>> Correct. A similar white noise effect can happen if you average
>>> the raw data itself. See the plot at the bottom of:
>>> http://www.leapsecond.com/pages/adev-avg/
>>>
>> Its a little more complicated than that.
>> The measured ADEV depends on the associated filter bandwidth (typically
>> for 1Hz sampling one uses a low pass (for the phase fluctuations) filter
>> bandwidth of 0.5Hz or less).
>> When one uses a time interval counter the counter input system noise
>> bandwidth may be as high as 100MHz (5370A/B) or 500MHz or more (DTS2070)
>> whereas the crystal oscillator buffer amp (principal source of OCXO
>> white phase noise floor) may have a somewhat lower bandwidth. The time
>> interval counter method severely undersamples the phase noise spectrum
>> leading to aliasing effects.
>> Averaging of this type creates a low pass filter that will reduce the
>> system noise to a large extent whilst not greatly affecting the
>> measurement as the equivalent filter bandwidth will still be much larger
>> than 0.5Hz and the equivalent filter response is far from ideal.
>
> True, but it is tricky since you will both reduce the measurement
> systems noise as well as the the DUTs noise (which is what you intend to
> measure).
>
> The aliasing effect is definitively there.
>
> Question is how to remove the system noise from the DUT noise, and I
> know of only approach which really avoids it is cross-correlation, but
> otherwise it is only various measures to remove and filter out the
> signal from noise before it is folded in, i.e. conservative design 
> measure.
>
> Anyway, I wanted to play around with averaging to see how the filtering
> effect behaves.
>
> Cheers,
> Magnus
>
> _______________________________________________
> time-nuts mailing list -- time-nuts at febo.com
> To unsubscribe, go to 
> https://www.febo.com/cgi-bin/mailman/listinfo/time-nuts
> and follow the instructions there.
>





More information about the time-nuts mailing list