
Efficient C and D sums calculation and decimation for least square estimation
of phase, frequency and PDEV

Magnus Danielson [1] proposed a very useful technique which can be used in optimizing data
processing of the Ω-frequency counters as well as PVAR calculations. Using that technique
timestamps can be processed by small blocks and processing results can be combined to get the
frequency or PVAR for the longer measurements time. But there is one nuance which can
introduce additional difficulties or compromise the performance of the timestamps
preprocessing.

Let's look at the C and D sums formulas:

∑
−

=

=
1

0

N

n
nxC (1)

∑
−

=

=
1

0

N

n
nnxD (2)

If the reference clock is 400MHz the phase xn will grow by 4e8 each second. It can be easily
shown that D sum (for the block size of 65536 timestamps, }65535,..1,0{∈n) will not fit in 64bit
integer for the measurement time greater than 20s (but it is common case if we are going to
calculate PDEV). This results in block calculation performance penalty (because of the need to
use floating point or more than 64bits integer math), and, possibly, loss of precision if the
floating point math is used.

So, let's modify decimation rule and block processing routines to fix this nuance. The main idea
is to calculate C and D sums for each new block restarting the phase from 0. Of cause the
starting phase of the current block should be tracked along with the current C and D sums, so the
proper decimation can be done. An interesting side effect of such implementation is simplified
phase unwrapping (if events frequency is high enough the phase counter will never overflow
collecting timestamps for the one block).

The decimation rules in the original paper are:

CCC 2112
+= (3)

DCNDD 221112
++= (4)

Using the (1) we can rewrite (3) as:

CxNCCCC N

N

n
n

N

n
N

N

n
nN xxx

0221

1

0

0
1

0
1

1

0
112 1

22

1

2

1
++=++=+= ∑∑∑

−

=

−

=

−

=
+ (5)

∑
−

=

=
1

0

0

02

2N

n
nxC (6)

where

1Nx is the starting phase of the current block and 0
nx are current block timestamps with the

zero starting phase. Using the same technique we can rewrite (4) as:

∑∑∑∑
−

=

−

=

−

=

−

=
+ +=+==

1

0

0
1

0

0
1

0

1

0
2

22

1

2

1

2

1
)(

N

n
n

N

n
Nn

N

n
N

N

n
nN nxnxxxnnxD (7)

DECNDCNDD N

N

n
n

N

n
N xnxnx

02211

1

0

0
1

0
21112 1

22

1
+++=+++= ∑∑

−

=

−

=

 (8)

∑
−

=

=
1

0

2N

n

nE (9)

∑
−

=

=
1

0

0

02

2N

n
nnxD (10)

The sum in (9) is a constant for a constant N2, it can be precalculated to improve the
performance.

The modified decimation rules are:

∑
−

=

=
1

0

2N

n

nE (11)

∑
−

=

=
1

0

0

02

2N

n
nxC (12)

∑
−

=

=
1

0

0

02

2N

n
nnxD (13)

CxNC N 0222 1
+= (14)

CCC 2112
+= (15)

DECNDD Nx
0221112 1

+++= (16)

NNN 2112
+= (17)

0

2112 NNN xxx += (18)

They might look complicated, but (11), (12) and (13) can be coded very efficiently using
standard integer math, (11) can even be precalculated (it is constant for the given N2) and the
other calculations should be done only once per block.

So, now the block processing routine should calculate the C02 and D02 sums only. Both sums fit
in 64bits integers, the phase inside one block can be represented by the 32bits integer. It greatly
improves the performance and simplifies block processing code (the experimental code was able
to process up to 43MSPS on general purpose 32bit ARM MCU).

Oleg Skydan
UR3IQO

[1] "Least square estimation of phase, frequency and PDEV," Magnus Danielson, Francois
Vernotte, Enrico Rubiola

